A PROBLEM OF FÖLDES AND PURI ON THE WIENER PROCESS

Z. SHI

ABSTRACT. Let W be a real-valued Wiener process starting from 0, and $\tau(t)$ be the right-continuous inverse process of its local time at 0. Földes and Puri [3] raise the problem of studying the almost sure asymptotic behavior of $X(t) = \int_0^{\tau(t)} 1\!\!1_{\{|W(u)| \leq \alpha t\}} du$ as t tends to infinity, i.e. they ask: how long does W stay in a tube before "crossing very much" a given level? In this note, both limsup and liminf laws of the iterated logarithm are provided for X.

1. Introduction

Let W be a real-valued Wiener process with W(0) = 0. Define its local time process

$$\ell(t,x) = \frac{d}{dx} \int_0^t \mathbf{1}_{\{W(u) < x\}} du,$$

which is almost surely continuous (up to a modification, which is taken for granted) in (t,x) according to Trotter's theorem ([7]). For a modern account of Wiener local times, see for example Revuz and Yor [6, Chap. VI] from stochastic analysis viewpoint, and Révész [5, Part I] through sample paths. We denote $\ell(t,0)$ by $\ell(t)$ for notational convenience, and write

$$\tau(s) = \inf\{t > 0 : \ell(t) > s\}, \quad s > 0,$$

the right-continuous inverse process of $\ell(t)$. In their recent paper on Wiener processes, Földes and Puri [3] raise the following problem: let

(1.1)
$$X(t) = \int_{0}^{\tau(t)} \mathbf{1}_{\{|W(u)| \le \alpha t\}} du, \quad t > 0,$$

with a fixed constant $\alpha > 0$, what can be said about the almost sure asymptotics of X?

Our answer to the "limsup" part of the question is a law of the iterated logarithm (LIL).

Theorem 1. For any $\alpha > 0$,

$$\limsup_{t\to\infty}\frac{X(t)}{t^2\log\log t}=\frac{8\alpha^2}{\pi^2}\quad a.s.$$

For the "liminf" behavior of X, we have an integral test characterizing its lower functions.

Received by the editors December 7, 1994.

1991 Mathematics Subject Classification. Primary 60J65; Secondary 60G17.

Key words and phrases. Wiener process (Brownian motion), law of the iterated logarithm.

Theorem 2. Let $\alpha > 0$, and let f > 0 be a non-decreasing function. Then

$$(1.3) \quad \mathbb{P}\Big[\,X(t)<\frac{t^2}{f(t)},\ i.o.\,\Big] = \left\{ \begin{array}{ll} 0 \\ \\ 1 \end{array} \right. \iff \int^\infty \frac{dt}{t} f^{1/2}(t) e^{-f(t)/2} \left\{ \begin{array}{ll} <\infty \\ \\ =\infty \end{array} \right..$$

In particular, the following Chung-type LIL holds:

(1.4)
$$\liminf_{t \to \infty} \frac{\log \log t}{t^2} X(t) = \frac{1}{2} \quad a.s.$$

Remarks. (i) In (1.3), the symbol "i.o." means "infinitely often" as t tends to infinity.

(ii) It is somewhat surprising that the lower functions of X do not depend on the value of α . Formally (i.e. informally!) taking $\alpha = \infty$ (thus $X(t) = \tau(t)$) in (1.3) and several lines of elementary calculation yield

$$\mathbb{P}\Big[\,\ell(t) > \big(t\,f(t)\big)^{1/2}, \text{ i.o.}\,\Big] = \left\{ \begin{array}{ll} 0 & \\ & \iff \int^\infty \frac{dt}{t} f^{1/2}(t) e^{-f(t)/2} \\ & = \infty \end{array} \right.,$$

for any non-decreasing function f>0. We therefore recover the Erdös-Feller-Kolmogorov-Petrov test for the upper functions of W, since the classical Lévy's identity asserts that $\{\ell(t);\,t\geq 0\}$ and $\{\sup_{0\leq s\leq t}W(s);\,t\geq 0\}$ have the same law. Theorem 1 is proved in Section 2, and Theorem 2 in Section 3.

2. Proof of Theorem 1

Let X(t) be defined as in (1.1). It follows from Brownian scaling that

$$(2.1) X(t) \stackrel{(d)}{=} t^2 X(1),$$

for any t > 0 (the symbol " $\stackrel{(d)}{=}$ " denoting identity in distribution). We are first interested in the Laplace transform of X(1).

Lemma 1. For any $\theta > 0$,

(2.2)
$$\mathbb{E}\exp\left(-\frac{\theta^2}{2}X(1)\right) = \exp\left(-\theta \tanh(\alpha\theta)\right).$$

Remark. This has previously been obtained by Földes and Puri [3, p. 536] by solving the corresponding Sturm-Liouville equation. Our proof, based on the Ray-Knight theorem, allows us to make use of a Lévy-type formula, thus avoiding further computation.

Proof of Lemma 1. By occupation times formula for local times (see for example Revuz and Yor [6, Corollary VI.1.6]), $X(1) = \int_{-\alpha}^{\alpha} \ell(\tau(1), x) dx$. The Brownian excursion theory confirms the independence between the processes

$$\{ \ell(\tau(1), x), x \ge 0 \} \text{ and } \{ \ell(\tau(1), -x), x \ge 0 \},$$

which, according to the second Ray-Knight theorem (Revuz and Yor [6, Theorem XI.2.3]), behave both like a square Bessel process of dimension 0 (i.e. a linear diffusion process with generator $2x\frac{d^2}{dx^2}$, absorbed at 0), starting from 1. Thus by scaling,

$$\mathbb{E}\exp\left(-\frac{\theta^2}{2}X(1)\right) = \left[\mathbb{E}\exp\left(-\frac{\theta^2}{2}\int_0^\alpha R^2(x)dx\right)\right]^2$$
$$= \left[\mathbb{E}\exp\left(-\frac{(\theta\alpha)^2}{2}\int_0^1 \hat{R}^2(s)ds\right)\right]^2,$$

where R and \hat{R} are Bessel processes of dimension 0, with R(0) = 1 and $\hat{R}(0) = 1/\sqrt{\alpha}$. Now Lemma 1 is a particular case (taken for dimension 0) of a formula for square Bessel processes presented in Revuz and Yor [6, Corollary XI.1.8].

Remark. For connections between quadratic functionals of Bessel processes and the Sturm-Liouville equation, see for example Pitman and Yor [4].

Although it does not seem trivial to deduce the exact upper tail of X(1) from its Laplace transform (2.2), one can manage to obtain the following useful estimate.

Lemma 2. For any $\alpha > 0$, we have

(2.3)
$$\lim_{\lambda \to \infty} \frac{1}{\lambda} \log \mathbb{P}\left(X(1) > \lambda\right) = -\frac{\pi^2}{8\alpha^2}.$$

Proof of Lemma 2. We begin with the upper bound. Fix $0 < \varepsilon < 1$. From (2.2) it follows using analytic continuation that

$$\mathbb{E}\exp\left(\frac{\theta^2}{2}X(1)\right) = \exp\left(\theta \operatorname{tg}(\alpha\theta)\right),\,$$

for $0 < \theta < \pi/2\alpha$. Consequently, for $\lambda > 0$, we have

$$\mathbb{P}\left(X(1) > \lambda\right) \leq \exp\left(-\frac{\pi^2(1-\varepsilon)^2}{8\alpha^2}\lambda\right) \mathbb{E}\exp\left(\frac{\pi^2(1-\varepsilon)^2}{8\alpha^2}X(1)\right)$$
$$= \exp\left(-\frac{\pi^2(1-\varepsilon)^2}{8\alpha^2}\lambda + \frac{\pi(1-\varepsilon)}{2\alpha}\operatorname{tg}\left(\frac{\pi(1-\varepsilon)}{2}\right)\right),$$

which yields

$$\limsup_{\lambda \to \infty} \frac{1}{\lambda} \log \mathbb{P} \Big(X(1) > \lambda \Big) \leq -\frac{\pi^2 (1 - \varepsilon)^2}{8\alpha^2}.$$

The upper bound is proved by sending ε to 0^+ . For the lower bound, let

$$H_{\alpha} = \inf\{t > 0 : |W(t)| = \alpha\};\$$

 $\sigma_0 = \inf\{t > H_{\alpha} : W(t) = 0\}.$

Observe that when $t \in (H_{\alpha}, \sigma_0)$, the Wiener process W stays away from 0, and thus $\ell(t)$ does not increase. Consequently, $\sigma_0 \leq \tau(1)$ in case $H_{\alpha} < \tau(1)$. Define

 $\hat{W}(t) = W(t+H_{\alpha}) - W(H_{\alpha})$ which is again a standard Wiener process, independent of $\{W(u); 0 \le u \le H_{\alpha}\}$. For any x, write $\hat{T}_x = \inf\{t > 0 : \hat{W}(t) = x\}$. Obviously,

$$\begin{split} X(1) & \geq \mathbf{1}_{\{H_{\alpha} < \tau(1)\}} \int_{H_{\alpha}}^{\sigma_0} \mathbf{1}_{\{|W(u)| \leq \alpha\}} du \\ & = \mathbf{1}_{\{H_{\alpha} < \tau(1), W(H_{\alpha}) = -\alpha\}} \int_{0}^{\hat{T}_{\alpha}} \mathbf{1}_{\{\hat{W}(u) \geq 0\}} du \\ & + \mathbf{1}_{\{H_{\alpha} < \tau(1), W(H_{\alpha}) = \alpha\}} \int_{0}^{\hat{T}_{-\alpha}} \mathbf{1}_{\{\hat{W}(u) \leq 0\}} du. \end{split}$$

By the strong Markov property and symmetry, we obtain:

$$\mathbb{P}\Big(X(1) > \lambda\Big) \ge \mathbb{P}\Big(H_{\alpha} < \tau(1)\Big) \,\mathbb{P}\Big(\int_{0}^{T_{\alpha}} \mathbf{1}_{\{W(u) \ge 0\}} du > \lambda\Big) \\
= \mathbb{P}\Big(H_{\alpha} < \tau(1)\Big) \,\mathbb{P}\Big(\int_{0}^{T_{1}} \mathbf{1}_{\{W(u) \ge 0\}} du > \frac{\lambda}{\alpha^{2}}\Big),$$

with $T_x = \inf\{t > 0 : W(t) = x\}$. According to the first Ray-Knight theorem (Revuz and Yor [6, Theorem XI.2.2]), $\{\ell(T_1, 1-x); 0 \le x \le 1\}$ is a two-dimensional square Bessel process (i.e. the square of Euclidean modulus of a two-dimensional Wiener process), starting from 0. Since

$$\int_0^{T_1} \mathbf{1}_{\{W(u) \ge 0\}} du = \int_0^1 \ell(T_1, 1 - x) dx,$$

and since a two-dimensional square Bessel process is (stochastically) greater than the square of a real-valued Wiener process, we have

$$\mathbb{P}\Big(X(1) > \lambda\Big) \ge \mathbb{P}\Big(H_{\alpha} < \tau(1)\Big) \,\mathbb{P}\Big(\int_{0}^{1} W^{2}(u) du > \frac{\lambda}{\alpha^{2}}\Big).$$

Recall the Cameron-Martin formula ([1]):

$$\mathbb{P}\left(\int_{0}^{1} W^{2}(u)du > x\right) \sim \frac{\sqrt{32}}{\pi^{2}} x^{-1/2} \exp\left(-\frac{\pi^{2}}{8}x\right), \quad x \to \infty,$$

(the symbol " $a(x) \sim b(x)$ " $(x \to x_0)$ denoting $\lim_{x \to x_0} a(x)/b(x) = 1$). Consequently, for sufficiently large λ ,

$$\mathbb{P}\left(X(1) > \lambda\right) \ge \frac{C(\alpha)}{\lambda^{1/2}} \exp\left(-\frac{\pi^2 \lambda}{8\alpha^2}\right),\,$$

with $C(\alpha) > 0$ a finite constant depending only on α . This implies the lower bound in Lemma 2.

Proof of Theorem 1. Let us begin with the upper bound. Fix a small $\varepsilon > 0$. Define $t_n = (1 + \varepsilon)^n$. Then $(1 + 5\varepsilon)t_n^2/t_{n+1}^2 \ge 1 + 2\varepsilon$. By scaling property (2.1), we have

$$\mathbb{P}\left(X(t_{n+1}) > (1+5\varepsilon)\frac{8\alpha^2}{\pi^2}t_n^2\log\log t_n\right)$$

$$= \mathbb{P}\left(X(1) > (1+5\varepsilon)\frac{8\alpha^2}{\pi^2}\frac{t_n^2}{t_{n+1}^2}\log\log t_n\right)$$

$$\leq \mathbb{P}\left(X(1) > (1+2\varepsilon)\frac{8\alpha^2}{\pi^2}\log\log t_n\right).$$

Using (2.3), the above expression is, when n is sufficiently large, bounded above by

$$\exp\left(-(1+\varepsilon)\log\log t_n\right) = \frac{1}{n^{1+\varepsilon}(\log(1+\varepsilon))^{1+\varepsilon}},$$

which sums for n. It follows from the Borel-Cantelli lemma that (almost surely) for large n, $X(t_{n+1}) \leq (1 + 5\varepsilon)(8\alpha^2/\pi^2)t_n^2 \log \log t_n$. Let $t \in [t_n, t_{n+1}]$. Then

$$\frac{X(t)}{t^2 \log \log t} \le \frac{X(t_{n+1})}{t_n^2 \log \log t_n} \le (1 + 5\varepsilon) \frac{8\alpha^2}{\pi^2}.$$

Accordingly,

$$\limsup_{t \to \infty} \frac{X(t)}{t^2 \log \log t} \le (1 + 5\varepsilon) \frac{8\alpha^2}{\pi^2},$$

for any $\varepsilon > 0$. Letting ε tend to 0^+ gives the upper bound in Theorem 1. It remains to verify the lower bound part. Fix again an $\varepsilon > 0$. Let $t_n = 2^n$ and let

$$A_n = \Big\{ \int_{\tau(t_{n-1})}^{\tau(t_n)} 1\!\!1_{\{|W(u)| \le \alpha t_n\}} du > (1 - \varepsilon) \frac{8\alpha^2}{\pi^2} t_n^2 \log \log t_n \Big\}.$$

The measurable events (A_n) are obviously independent. Moreover,

$$\mathbb{P}(A_n) = \mathbb{P}\Big(\int_0^{\tau(t_n - t_{n-1})} \mathbf{1}_{\{|W(u)| \le \alpha t_n\}} du > (1 - \varepsilon) \frac{8\alpha^2}{\pi^2} t_n^2 \log \log t_n\Big),$$

using the strong Markov property. By scaling, we have

$$\mathbb{P}(A_n) = \mathbb{P}\left(\int_0^{\tau(1)} \mathbb{1}_{\{|W(u)| \le \alpha t_n/(t_n - t_{n-1})\}} du > (1 - \varepsilon) \frac{8\alpha^2}{\pi^2} \frac{t_n^2}{(t_n - t_{n-1})^2} \log \log t_n\right)$$

$$= \mathbb{P}\left(\int_0^{\tau(1)} \mathbb{1}_{\{|W(u)| \le 2\alpha\}} du > (1 - \varepsilon) \frac{32\alpha^2}{\pi^2} \log \log t_n\right),$$

using the fact that $t_n/(t_n-t_{n-1})=2$. Applying (2.3) to 2α (instead of α) implies that for large n,

$$\mathbb{P}(A_n) \ge \exp(-\log\log t_n) = \frac{1}{n\log 2},$$

which forms a divergent series. Since the A_n 's are independent, the Borel-Cantelli lemma tells $\mathbb{P}(A_n, \text{i.o.}) = 1$. Therefore

$$\liminf_{t \to \infty} \frac{X(t)}{t^2 \log \log t} \ge (1 - \varepsilon) \frac{8\alpha^2}{\pi^2} \quad \text{a.s.}$$

Since the constant $\varepsilon > 0$ can be arbitrarily small, this yields the lower bound in Theorem 1.

3. Proof of Theorem 2

Let us keep the notation introduced previously. The first step is to establish the lower tail of X(1).

Lemma 3. We have, for any $\alpha > 0$,

(3.1)
$$\mathbb{P}\left(X(1) < x\right) \sim \left(\frac{2}{\pi}\right)^{1/2} x^{1/2} \exp\left(-\frac{1}{2x}\right), \quad x \to 0.$$

Consequently, there exists a finite constant C > 0 such that

(3.2)
$$\mathbb{P}\left(X(1) < x\right) \le C \exp\left(-\frac{1}{2x}\right), \quad \forall x > 0.$$

The proof of Lemma 3 is based on a general complex analysis argument I have learnt from Csáki [2, p. 210], which is stated as follows.

Lemma 4. Let g(z) be holomorphic on $\{(\operatorname{Im}(z))^2 > 4\varepsilon(\varepsilon - \operatorname{Re}(z))\}$ for any sufficiently small $\varepsilon > 0$, and let $G(z) = g(z^2)$. Assume that for $t \to \infty$ there exist finite constants $\beta \geq 0$, $\gamma > 1$ and $\eta > 1/2$ such that

(3.3)
$$G(t+iu) = o\left(G(t)\exp(\beta|u|t^{-1/2})\right) \quad uniformly \text{ for } |u| \ge t^{\eta},$$

(3.4)
$$G''(t+iu) = o(t^{-\gamma}G(t)) \quad uniformly \text{ for } |u| \le t^{\eta}.$$

Then for any c > 0,

$$(3.5) \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} p^{-1/2} g(p) \exp(ps - 2p^{1/2}) dp = \frac{1 + o(s^{(\gamma-1)/2})}{(\pi s)^{1/2}} g(s^{-2}) \exp(-\frac{1}{s}),$$

 $as \ s \rightarrow 0^+$.

Proof of Lemma 3. From (2.2), we have, using integration by parts,

$$\int_0^\infty dx \, e^{-\theta x} \mathbb{P}\Big(X(1) < x\Big) = \frac{1}{\theta} \exp\Big(-(2\theta)^{1/2} \, \tanh\big(\alpha(2\theta)^{1/2}\big)\Big),$$

for $\theta > 0$. Inverting the Laplace transform yields

$$\mathbb{P}\left(X(1) < x\right) = \frac{1}{2\pi i} \int_{2c-i\infty}^{2c+i\infty} \frac{d\theta}{\theta} e^{x\theta} \exp\left(-(2\theta)^{1/2} \tanh\left(\alpha(2\theta)^{1/2}\right)\right) \\
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{dp}{p} e^{2px} \exp\left(-2p^{1/2} \tanh\left(2\alpha p^{1/2}\right)\right) \\
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} p^{-1/2} g(p) \exp\left(2px - 2p^{1/2}\right) dp,$$
(3.6)

where

$$g(p) = p^{-1/2} \exp\left(2p^{1/2} - 2p^{1/2} \tanh(2\alpha p^{1/2})\right).$$

Obviously, g(z) is holomorphic on $\{ (\operatorname{Im}(z))^2 > 4\varepsilon(\varepsilon - \operatorname{Re}(z)) \}$ for any $\varepsilon > 0$. Let

$$G(z) = g(z^2) = \frac{1}{z} \exp\left(2z - 2z \tanh(2\alpha z)\right) = \frac{1}{z} \exp\left(\frac{4z}{e^{4\alpha z} + 1}\right).$$

We now verify conditions (3.3) and (3.4) for G. Write $G(z) = z^{-1} \exp(H(z))$, with $H(z) \equiv 4z/(e^{4\alpha z} + 1)$. Then

(3.7)
$$\operatorname{Re}(H(t+iu)) - H(t) \leq \left| H(t+iu) - H(t) \right| \\ = \frac{|4te^{4\alpha t}(1 - e^{4i\alpha u}) + 4iu(e^{4\alpha t} + 1)|}{|e^{4\alpha (t+iu)} + 1| (e^{4\alpha t} + 1)|} \\ \leq \frac{8t + 4|u|}{e^{4\alpha t} - 1}.$$

Since $(8t+4|u|)/(e^{4\alpha t}-1) \leq |u|t^{-1/2}$ for any $|u| \geq t \geq t_0$ (t_0 depending on the value of α), the above inequality trivially implies (3.3) with $\beta=1$ and $\eta=1$. For (3.4), observe that $G''(z)=z^{-2}\big(2-2zH'(z)+z^2H''(z)+z^2(H'(z))^2\big)G(z)$. Assume $|u|\leq t$ and $t\geq t_0$. By (3.7), we have Re $\big(H(t+iu)\big)-H(t)\leq 1$. Thus $|G(t+iu)|\leq 3G(t)$. Several lines of elementary calculation show that

$$\left| 2 - 2(t+iu)H'(t+iu) + (t+iu)^2H''(t+iu) + (t+iu)^2(H'(t+iu))^2 \right| \le 3.$$

Consequently, (3.4) holds with $\gamma = 3/2$ (actually any constant strictly smaller than 2 will do). Applying (3.5) to s = 2x and using (3.6) completes the proof of Lemma 3.

Proof of Theorem 2. The convergent half is an easy consequence of Lemma 3. Indeed, assume f to be non-decreasing such that

(3.8)
$$\int_{-\infty}^{\infty} \frac{dt}{t} f^{1/2}(t) e^{-f(t)/2} < \infty.$$

Thus $f(t) \uparrow \infty$ as $t \uparrow \infty$. Pick a large initial value t_0 and define the sequence (t_n) by recurrence: $t_{n+1} = t_n(1 + 1/f(t_n))$ for $n = 0, 1, 2, \cdots$. Obviously (t_n) increases to infinity. A standard argument shows that (3.8) implies

(3.9)
$$\sum_{n} f^{-1/2}(t_n) e^{-f(t_n)/2} < \infty.$$

By scaling property (2.1) and small deviation probability estimate (3.1), we have

$$\mathbb{P}\left(X(t_n) < \frac{t_n^2}{f(t_n) - 3}\right) = \mathbb{P}\left(X(1) < \frac{1}{f(t_n) - 3}\right)$$

$$\leq \left(f(t_n) - 3\right)^{-1/2} \exp\left(-\frac{f(t_n) - 3}{2}\right)$$

$$\leq 5f^{-1/2}(t_n)e^{-f(t_n)/2},$$

which, according to (3.9), is summable. Applying the Borel-Cantelli lemma gives that (almost surely) for sufficiently large n, $X(t_n) \geq t_n^2/(f(t_n)-3)$. Let $t \in [t_n, t_{n+1}]$. Then

$$X(t) \ge X(t_n) \ge \frac{t_n^2}{f(t_n) - 3} = \frac{t_{n+1}^2}{\left(1 + 1/f(t_n)\right)^2 \left(f(t_n) - 3\right)} \ge \frac{t_{n+1}^2}{f(t_n)} \ge \frac{t^2}{f(t)},$$

implying the convergent half of Theorem 1. To check the divergent half, let f>0 be non-decreasing with

(3.10)
$$\int_{-\infty}^{\infty} \frac{dt}{t} f^{1/2}(t) e^{-f(t)/2} = \infty.$$

In light of (1.4), let us assume without loss of generality that

(3.11)
$$\log \log t \le f(t) \le 3 \log \log t.$$

For an elegant argument justifying (3.11), we refer to Csáki [2]. Let $\rho > 0$ and $\varepsilon > 0$. Fix a large initial value $i_0 \equiv i_0(\rho, \varepsilon)$. Define $t_i = \exp(\rho i/\log i)$ (for $i \ge i_0$). By means of (3.11), we have

(3.12)
$$1 + \frac{\rho}{2\log i} \le \frac{t_i}{t_{i-1}} \le 1 + \frac{2\rho}{\log i},$$

(3.13)
$$\frac{1}{2}\log i \le f(t_i) \le 3\log i, \quad i > i_0.$$

Moreover, it is easily seen from (3.10) that $\sum_i f^{-1/2}(t_i) \exp(-f(t_i)/2) = \infty$. Now consider

$$A_i = \left\{ \frac{t_{i-1}^2}{f(t_i)} \le X(t_i) < \frac{t_i^2}{f(t_i)} \right\}.$$

Using (2.1), (3.1), (3.12) and (3.13) gives

$$\mathbb{P}(A_i) = \mathbb{P}\left[\frac{t_{i-1}^2}{t_i^2 f(t_i)} \le X(1) < \frac{1}{f(t_i)}\right]$$

$$\ge (1 - \varepsilon) \left(\frac{2}{\pi}\right)^{1/2} \left(f^{-1/2}(t_i) e^{-f(t_i)/2} - \left(\frac{t_{i-1}^2}{t_i^2 f(t_i)}\right)^{1/2} \exp\left(-\frac{t_i^2 f(t_i)}{2t_{i-1}^2}\right)\right)$$

$$(3.14) \ge (1 - \varepsilon)(1 - e^{-\rho/4})(2/\pi)^{1/2} f^{-1/2}(t_i) e^{-f(t_i)/2},$$

for any $n > i_0$. Consequently,

(3.15)
$$\sum_{i} \mathbb{P}(A_i) = \infty.$$

Pick $i_0 < i < j$. In view of the strong Markov property, we have

$$\mathbb{P}(A_{i}A_{j}) \leq \mathbb{P}\left(A_{i}, \int_{\tau(t_{i})}^{\tau(t_{j})} \mathbf{1}_{\{|W(u)| \leq \alpha t_{j}\}} du < \frac{t_{j}^{2}}{f(t_{j})} - \frac{t_{i-1}^{2}}{f(t_{i})}\right) \\
\leq \mathbb{P}(A_{i}) \mathbb{P}\left(\int_{0}^{\tau(t_{j}-t_{i})} \mathbf{1}_{\{|W(u)| \leq \alpha(t_{j}-t_{i})\}} du < \frac{t_{j}^{2}-t_{i-1}^{2}}{f(t_{j})}\right).$$

The above estimate together with scaling property (2.1) readily yield

(3.16)
$$\mathbb{P}(A_i A_j) \le \mathbb{P}(A_i) \, \mathbb{P}\left(X(1) < \frac{t_j^2 - t_{i-1}^2}{(t_i - t_i)^2 f(t_j)}\right),$$

for any $i_0 < i < j$. Define

$$\mathcal{E}(n) = \left\{ i_0 < i < j \le n : j - i < (\log i)^3 \right\},$$

$$\mathcal{F}(n) = \left\{ i_0 < i < j \le n : j - i \ge (\log i)^3 \right\}.$$

Remark that when $i < j < i + (\log i)^3$,

$$\frac{j}{\log j} - \frac{i}{\log i} = \frac{(j-i)\log i - i\log(1 + (j-i)/i)}{\log i \log j} \sim \frac{j-i}{\log j} \sim \frac{j-i}{\log j},$$

as $i \to \infty$. Let $(i, j) \in \mathcal{E}(n)$. Then by the above observation, we have

$$\exp\left(-\frac{2\rho(j-i)}{\log i}\right) \le \frac{t_{i-1}}{t_i} \le \frac{t_i}{t_i} \le \exp\left(-\frac{\rho(j-i)}{2\log i}\right).$$

Therefore by (3.13),

$$\frac{t_j^2 - t_{i-1}^2}{(t_j - t_i)^2 f(t_j)} \le \frac{t_j^2 - t_{i-1}^2}{(t_j - t_i)^2 f(t_i)} \le \frac{1 - \exp(-4\rho(j-i)/\log i)}{(1 - \exp(-\rho(j-i)/2\log i))^2} \frac{2}{\log i} \le \frac{C_1}{\min(j-i,\log i)},$$

for some finite constant $C_1 > 0$ depending only on ρ and ε (i_0 depending on ε). Using (3.16) and (3.2), we obtain (writing $C_2 \equiv 1/(2C_1)$ in the sequel):

$$\mathbb{P}(A_i A_j) \le C \mathbb{P}(A_i) \exp(-C_2 \min(j - i, \log i))$$

$$< C \mathbb{P}(A_i) \exp(-C_2(j - i)) + C \mathbb{P}(A_i) \exp(-C_2 \log i),$$

(C being the constant introduced in (3.2)) which in turn implies

$$\sum_{(i,j)\in\mathcal{E}(n)} \mathbb{P}(A_i A_j) \leq C \sum_{i=i_0+1}^n \mathbb{P}(A_i) \sum_{j>i} e^{-C_2(j-i)} + C \sum_{i=i_0+1}^n \mathbb{P}(A_i) \sum_{i< j < i+(\log i)^3} i^{-C_2}$$

$$\leq C_3 \sum_{i=i_0+1}^n \mathbb{P}(A_i),$$
(3.17)

for some finite constant $C_3 > 0$. Now let $(i, j) \in \mathcal{F}(n)$. In this case, $j - (\log j)^2 \ge i + (\log i)^3 - (\log(i + (\log i)^3))^2 \ge i$. Thus $j - i \ge (\log j)^2$. It is noticed that

$$\frac{j}{\log j} - \frac{i}{\log i} = \frac{(j-i)\log i - i\log(1+(j-i)/i)}{\log i\,\log j} \ge \frac{j-i}{2\log j}.$$

Therefore, we have

$$\frac{t_j^2 - t_{i-1}^2}{(t_j - t_i)^2 f(t_j)} \le \frac{1}{(1 - t_i/t_j)^2 f(t_j)} \le \frac{1}{(1 - \exp(-\rho(j-i)/2\log j))^2 f(t_j)} \le \frac{1}{(1 - (\log j)^{-2}) f(t_j)}.$$

According to (3.16) and (3.1), we get

$$\mathbb{P}(A_i A_j) \le (1+\varepsilon) \mathbb{P}(A_i) \left(\frac{2}{\pi}\right)^{1/2} f^{-1/2}(t_j) \exp\left(-\frac{\left(1 - (\log j)^{-2}\right) f(t_j)}{2}\right).$$

Since $(\log j)^{-2} f(t_j)/2 \le 3/2 \log j \le \varepsilon$ for $j \ge i_0$, the above estimate together with (3.14) confirm

$$\mathbb{P}(A_i A_j) \le \frac{e^{\varepsilon} (1+\varepsilon)}{(1-\varepsilon)(1-e^{-\rho/4})} \mathbb{P}(A_i) \mathbb{P}(A_j),$$

which, with the aid of (3.17) and (3.15), yields

$$\liminf_{n \to \infty} \sum_{i=i_0+1}^n \sum_{j=i_0+1}^n \mathbb{P}(A_i A_j) / \left(\sum_{i=i_0+1}^n \mathbb{P}(A_i)\right)^2 \le \frac{1}{1 - e^{-\rho/4}}.$$

Since $\sum_i \mathbb{P}(A_i)$ diverges, using a well-known version of the Borel-Cantelli lemma (see for example Révész [5, p. 28]) gives $\mathbb{P}(A_i, \text{i.o.}) \geq 1 - e^{-\rho/4}$. A fortiori, we have

$$\mathbb{P}\left[X(t) < \frac{t^2}{f(t)}, \text{ i.o. }\right] \ge 1 - e^{-\rho/4},$$

for any $\rho > 0$. The proof of the divergent half is completed by sending ρ to infinity.

ACKNOWLEDGEMENTS

I am grateful to Marc Yor for helpful comments on the first draft of this work. Many thanks are due to an anonymous referee for a careful reading of the manuscript and for valuable suggestions.

References

- R.H. Cameron and W.T. Martin, The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, J. Math. Phys. 23 (1944), 195–209. MR 6:132a
- E. Csáki, An integral test for the supremum of Wiener local time, Probab. Th. Rel. Fields 83 (1989), 207–217. MR 91a:60206
- A. Földes and M.L. Puri, The time spent by the Wiener process in a narrow tube before leaving a wide tube, Proc. Amer. Math. Soc. 117 (1993), 529–536. MR 93d:60131
- J.W. Pitman and M. Yor, A decomposition of Bessel bridges, Z. Wahrscheinlichkeitstheorie verw. Gebiete 59 (1982), 425–457. MR 84a:60091
- P. Révész, Random Walk in Random and Non-Random Environments, World Scientific, Singapore, 1990. MR 92c:60096
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 2nd ed., Springer, Berlin, 1994. CMP 95:04
- H.F. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425–433. MR 20:2795

Université Paris VI, L.S.T.A. - CNRS URA 1321, Université Paris VI, Tour 45-55, 4 Place Jussieu, F-75252 Paris Cedex 05, France

 $E ext{-}mail\ address: shi@ccr.jussieu.fr}$